OPTIMASI METODE SUPPORT VECTOR MACHINE MENGGUNAKAN ALGORITMA GENETIKA UNTUK KLASIFIKASI PENYAKIT JANTUNG

SETIANI, SELIA NUNIK (2023) OPTIMASI METODE SUPPORT VECTOR MACHINE MENGGUNAKAN ALGORITMA GENETIKA UNTUK KLASIFIKASI PENYAKIT JANTUNG. S1 thesis, Universitas Muhammadiyah Purwokerto.

[img]
Preview
Text
SELIA NUNIK SETIANI_COVER.pdf

Download (7MB) | Preview
[img]
Preview
Text
SELIA NUNIK SETIANI_BAB I.pdf

Download (1MB) | Preview
[img]
Preview
Text
SELIA NUNIK SETIANI_BAB II.pdf

Download (1MB) | Preview
[img] Text
SELIA NUNIK SETIANI_BAB III.pdf
Restricted to Registered users only

Download (1MB)
[img] Text
SELIA NUNIK SETIANI_BAB IV.pdf
Restricted to Registered users only

Download (1MB)
[img] Text
SELIA NUNIK SETIANI_BAB V.pdf
Restricted to Registered users only

Download (962kB)
[img]
Preview
Text
SELIA NUNIK SETIANI_DAPUS.pdf

Download (973kB) | Preview
[img] Text
SELIA NUNIK SETIANI_LAMPIRAN.pdf
Restricted to Registered users only

Download (6MB)

Abstract

Heart disease is the result of plaque buildup inside the coronary arteries, which blocks blood flow to the heart and increases the risk of heart attack and other complications. The problem discussed in this study is why optimization is carried out to determine parameter values and produce optimal performance in a classification model, an algorithm is needed, namely a Genetic Algorithm, because Genetic Algorithms are able to find optimal solutions. The purpose of this study is to classify heart disease measuring the level of accuracy, precission, recall and f1-score using the Support Vector Machine method and Genetic Algorithms as research optimization. The type of research used in the classification of heart disease is to use applied research. The results of this study are classification performance using SVM with accuracy results of 0.80, precission of 0.79, recall of 0.79 and f1-score of 0.79. The SVM-GA method produces a more optimal classification by producing an accuracy of 0.83, precission of 0.83, recall of 0.83 and an f1-score of 0.83.

Item Type: Thesis (S1)
Uncontrolled Keywords: Classification, Genetihc Algorithm, Heart and Support Vectore Machine.
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QA Mathematics > QA76 Computer software
Divisions: Fakultas Teknik > Teknik Informatika S1
Depositing User: Catur Indra H.
Date Deposited: 17 Feb 2023 06:47
Last Modified: 17 Feb 2023 06:47
URI: https://repository.ump.ac.id:80/id/eprint/15206

Actions (login required)

View Item View Item